POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Reactor Engineering

Course

Field of study Year/Semester

Pharmaceutical Engineering 3/6

Area of study (specialization) Profile of study general academic

Level of study Course offered in

First-cycle studies polish

Form of study Requirements

full-time compulsory

Number of hours

Lecture Laboratory classes Other (e.g. online)

30 0 0

Tutorials Projects/seminars

0 15

Number of credit points

3

Lecturers

Responsible for the course/lecturer: Responsible for the course/lecturer:

dr hab. inż. Krzysztof Alejski, prof. PP dr inż. Beata Rukowicz

Faculty of Chemical Technology Faculty of Chemical Technology

Institute of Chemical technology and Institute of Chemical technology and

Engineering Engineering

krzysztof.alejski@put.poznan.pl beata.rukowiczi@put.poznan.pl

Prerequisites

Student should have fundamental knowledge in the range of thermodynamics and chemical kinetics and

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

also should have the ability to use differential calculus. The student has the ability to use a differential calculus. Student has the ability to acquire information from specified sources.

Course objective

Obtaining knowledge and skills in material and energy balancing of reactor processes, as well as kinetic calculation and selection of chemical reactors for various reaction systems.

Course-related learning outcomes

Knowledge

- 1. Has structured and theoretically founded knowledge about the classification of reactors and their use to conduct reaction processes for various purposes. (K_W1, K_W16)
- 2. Has knowledge of theoretical models used in reactor calculations. (K_W11, K_W16)
- 3. Has knowledge about the conditions for choosing the type of reactor depending on the type of process. (K_W16, K_W18)

Skills

- 1. Has the ability to conduct balance calculations of reaction systems. (K_U16)
- 2. He can choose the type and design reactor for pharmaceutical production. (K_U16, K_U17)

Social competences

- 1. Understands the need to constantly update knowledge. (K_K1, K_K2)
- 2. Has the ability to work in a team. (K_K2, K_K4)

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

The knowledge acquired during the lecture and the skills are verified on a stationary /remote basis on a written exam including 5 open questions. Passing threshold: 50% of points. Knowledge, skills and competences during project-based classes are verified on the basis of projects made in teams of two.

Programme content

- 1. Classification of reactors.
- 2. Special reactors.
- 3. Material and energy balance of flow reactor.
- 4. Theoretical models of reactors.
- 5. Design of reactors.
- 6. Criteria for choosing the reactor type.

Teaching methods

Lecture: presentation with discussion on the board.

Project: implementation of the reactor design in two-man teams.

Bibliography

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Basic

- 1. J. Szarawara, J. Piotrowski, Podstawy teoretyczne technologii chemicznej, Warszawa, PWN 2010.
- 2. Podstawy technologii chemicznej i inżynierii reaktorów, pod red. M. Wiśniewskiego i K. Alejskiego, skrypt, Wydawnictwo Politechniki Poznańskiej, Poznań 20017.
- 3. A. Burghardt, G. Bartelmus, Inżynieria reaktorów chemicznych, PWN Warszawa 2001.

Additional

- 1. P.W. Atkins, Chemia fizyczna, Wyd. Nauk. PWN, Warszawa 2003.
- 2. J. Szarawara, Termodynamika chemiczna stosowana, WNT 2007.

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,0
Classes requiring direct contact with the teacher	45	2,0
Student's own work (literature studies, preparation for	30	1
tests/exam, project preparation) ¹		

3

¹ delete or add other activities as appropriate